a-联吡啶]fexp(-Ea3/RT)
υ4=K[Cu2+]a[HCHO]b[OH-]c[ED-TA4-]d[K4Fe(CN)6]e[a,a’-联吡啶]fexp(-Ea4/RT)
因为[Cu2+]、[HCHO]、[OH-]、[ED-TA4-]浓度保持不变,故可令A=K[Cu2+]a[HCHO]b[OH-]c[EDTA4-]d为常数,所以上述方程式可简化为:
υ1=Aexp(-Ea1/RT)(1)
υ2=A[K4Fe(CN)6]eexp(-Ea2/RT)(2)
υ3=A[a,a’-联吡啶]fexp(-Ea3/RT)(3)
υ4=A[K4Fe(CN)6]e[a,a’-联吡啶]f
exp(-Ea4/RT)(4)
式中Ea为沉积铜的化学反应活化能,T为工作温度,a、b、c、d、e、f、e’、f’为动力学参数。
4 结果与讨论
4.1 化学镀铜活化能和沉积速率
图1为实验所得的铜沉积速率与镀液的工作温度的变化关系,图中直线为计算机模拟所得。表1则表示对应于图1的斜率和截距。由图1可知,在同一镀液温度下,相对于不含添加剂镀液(曲线1),a,a’-联吡啶、K4Fe(CN)6的加入,使得铜沉速率下降,可见它们对铜的化学沉积有阻碍作用;沉积速率的对数值(1n)与镀液温度的倒数(1/T)呈直线关系,其斜率分别为3832.1、4438.3、6311.7和5712.1,据此可计算出铜化学沉积反应对应的活化能分别为Ea1=31.9KJ/mol、Ea2=36.9KJ/mol、Ea3=52.5KJ/mol、Ea4=47.5kJ/mol。
化学镀铜沉积速率受两方面因素的影响,一是化学沉铜活化能,二是受添加剂动力学参数影响的动力学过程。这可从(2)、(3)、(4)方程式看出。由于1nυ与1/T呈线性关系,各直线都有一固定的斜率和截距(如表1)。斜率反映出这种镀液中沉积铜的活化能大小,而截距则确定镀液中沉积铜的动力学过程。活化能和动力学过程共同决定镀速的大小。将图1中的曲线1与2、3或4进行比较,可推测在温度高到一定值时,两条直线将相交,低于交点温度,活化能起主要作用;高于交点温度,动力学过程起主要作用。当活化能起主要作用时,镀速随活化能减小而增大;而当动力学过程起主要作用时,即使铜沉积活化能较大,沉积速率仍较大。
表1 对应于图1的斜率和截距
镀液 斜率 活化能(KJ/mol) 截距
1 3832.1 31.9 14.3
2 4438.3 36.9 15.9
3 6311.7 52.5 20.9
4 5712.1 47.5 18.7
表2 不同温度下的沉铜速率 mg/cm2·h
温度(℃) 35 40 45 50 55 60 65 70